A Fast Local Search Approach for Multiobjective Problems
نویسندگان
چکیده
In this article, we present a new local method for multiobjective problems. It is an extension of local search algorithms for the single objective case, with specific mechanisms used to build the Pareto set. The performance of the local search algorithm is illustrated by experimental results based on a real problem with three objectives. The problem is issued from electric car-sharing service with a car manufacturer partner. Compared to the Multiobjective Pareto Local Search (PLS) well known in the scientific literature [1], the proposed model aims to improve: the solutions quality and the time computing.
منابع مشابه
GPU-Based Approaches for Multiobjective Local Search Algorithms. A Case Study: The Flowshop Scheduling Problem
Multiobjective local search algorithms are efficient methods to solve complex problems in science and industry. Even if these heuristics allow to significantly reduce the computational time of the solution search space exploration, this latter cost remains exorbitant when very large problem instances are to be solved. As a result, the use of GPU computing has been recently revealed as an effici...
متن کاملVery Large-Scale Neighborhood Search for Solving Multiobjective Combinatorial Optimization Problems
Very large-scale neighborhood search (VLSNS) is a technique intensively used in single-objective optimization. However, there is almost no study of VLSNS for multiobjective optimization. We show in this paper that this technique is very efficient for the resolution of multiobjective combinatorial optimization problems. Two problems are considered: the multiobjective multidimensional knapsack pr...
متن کاملGeneralized Multiobjective Evolutionary Algorithm Guided by Descent Directions
This paper proposes a generalized descent directions-guided multiobjective algorithm (DDMOA2). DDMOA2 uses the scalarizing fitness assignment in its parent and environmental selection procedures. The population consists of leader and non-leader individuals. Each individual in the population is represented by a tuple containing its genotype as well as the set of strategy parameters. The main nov...
متن کاملA Simple yet Efficient Multiobjective Combinatorial Optimization Method Using Decomposition and Pareto Local Search
Combining ideas from evolutionary algorithms, decomposition approaches and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: MoMad. It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MoMad evolves three populations: popula...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کامل